An Enzyme-catalyzed Synthesis of Natural α -Tocopherol

Eisaku Mizuguchi, Masumi Takemoto, and Kazuo Achiwa*

School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Shizuoka 422, Japan

(Received in Japan 16 June 1993)

Abstract: The natural α -tocopherol was synthesized by enzyme-catalyzed enantioselective hydrolysis. The unnatural enantiomer as a by-product was also converted to natural α -tocopherol by racernization and repeated enzyme-catalyzed hydrolysis.

The α -tocopherol (vitamin E) is known as a potent and safe, lipid-soluble antioxidant. Recently, tocopherol and super oxide dismtase(SOD) and other antioxidants are attracting attention as scavengers of super oxide series¹. As tocopherol is being used for various purposes, in the future, demand will more increase. Presently, the majority of tocopherol is being used as a mixture of its eight isomers, which were reported to show different biological activities. Tocopherol with the S configuration at the 2-position of its chroman ring is weak in its biological activities². Previously, dl-tocopherol [(2RS,4'R,8'R)-1] has been resolved into d- and l-tocopherol [(R) - and (S)-1] by Karrer³ and Robeson⁴ et al. using 3-bromocamphor-8-sulfonate or piperazine, respectively. However, their optical resolution is not efficient and of less utility value⁵. After investigation, we found an effective synthesis of natural α -tocopherol using the enzyme-catalyzed kinetic resolution and the conversion of the unnatural enantiomer to α -tocopherol by its racemization and repeated enzyme-catalyzed hydrolysis.

HO
$$\frac{15}{7}$$
 $\frac{4}{8}$ $\frac{3}{2}$ $\frac{1}{8}$ $\frac{4}{(R)}$ $\frac{1}{(R)}$ $\frac{1}{8}$ $\frac{1}{(R)}$ $\frac{4}{(R)}$ $\frac{1}{(R)}$ $\frac{1}{(R)}$ $\frac{1}{(R)}$

First, enzymatic hydrolysis of dl-tocopherol acetate and benzoate were examined, but these reactions were unsuccessful. Next, we chose tocol acetate[(RS)-7] as less sterically hindered substrate. Its ester site and stereogenic carbon atom of the chroman 2-position were more able to interact with enzymes. The (RS)-7 was synthesized as shown in Scheme 1. Table 1 shows the results of its enzyme-catalyzed hydrolysis. The hydrolysis of (RS)-7 with lipaseAY⁶ gave (R)-7⁷ in extremely high optical yield (>99%ee), which was converted to natural α -tocopherol [(R)-1]⁸ without racemization by methylation according to Kijima's method⁹. It is an interesting result that (RS)-7 is hydrolyzed with high enantioselectivity by lipaseAY, in spite of the reaction site being fairly remote from the stereogenic carbon atom of its chroman ring. To our knowledge, no enzyme-catalyzed enantioselective hydrolysis of this type of substrate has been reported ¹⁰.

Enzymatic Synthesis of d-α-Tocopherol

HO
$$\frac{a}{75\%}$$
 R $\frac{b}{94\%}$ R $\frac{d}{OH}$ AcO $\frac{d}{(RS)-7}$ $\frac{d}{72\%}$ $\frac{d}{(RS)-7}$ $\frac{d}{($

Reagents;

a KMnO₄/acetone b vinyl bromide,t-BuLi/Et₂O c BF₃-Et₂O/Et₂O d AcCl, Et3N/THF & CH2O,H3BO4,H2/Pd-C/(CH3O)3B f AcCI,Et3N/THF,Na2Cr2O7/AcOH g NaOEt/EtOH h NaBH4, then H2/Pd-C/MeOH

Table 1 Lipase-catalyzed Kinetic Resolution of Tocol acetate RS-7 a

Entry	Enzyme ⁶	Time(h)	C.Y. (%) b	O.Y. (%ee) ^c	C.Y. (%) ^b	O.Y. (%ee) ^c
1	lipase AY	1	32	>99	60	38
2	CHE	48	42	76	50	55
3	lipase AH	48	78	2.5	16	12
4	lipase PS	48	100	0	0	0
5	lipase M	48	100	0	0	0

a All reactions were carried out by stirring a mixture of substrate(100mg)lipase(100mg)and IPE saturated with water at 25°C. b isolated yield c Optical yields of 7 were determined by HPLC analyses using a column packed with Chiralcel OD-H (2-propanol/hexane) and optical yields of 6 were determined after conversion to 7.

Scheme 2

HO OH $\frac{1}{3}$ O

d

56%

d-α-tocopherol [(R)-1]

Reagents; a pyrrolidine/toluene b AcCl,Et₃N/THF c NaBH₄,thenH₂/Pd-C/MeOH d CH₂O, H₃BO₄,H₂/Pd-C/(CH₃O)₃B e EtONa/EtOH

(R)-10

Table 2 Lipase-catalyzed Kinetic Resolution of RS-10 a

Entry	Enzyme ⁶	Time(h)	C.Y.(%) ¹ O.Y.(%ee) ^c		C.Y.(%) [©] .Y.(%ee) ^c	
1	lipaseAH	2	13	42	87	31
2	lipaseAK	8	36	18	64	39
3	lipaseM	24	40	74	55	40
4	lipaseAY	0.7	18	9.7	73	22
5	F-AP15	72	53	13	40	41

a All reactions were carried out by stirring a mixture of substrate(100mg)lipase(100mg)and IPE saturated with water at 25°C. b Isolated yield. c Optical yields of 10 were determined by HPLC analyses using a column packed with Chiralcel OD-H (2-propanol/hexane), and optical yields 8 were determined after conversion to 10.

Acetylation of the other enantiomer [(S)-6] and subsequent oxidation with Na₂Cr₂O₇ gave 4-oxotocol acetate [(S)-10], which was easily racemized with NaOEt. Reduction of the (RS)-8 thus obtained with NaBH₄ and subsequent hydrogenation with Pd-C gave (RS)-6. This (RS)-6 was then employed as a substrate of enzyme-catalyzed hydrolysis.

Alternatively, (RS)-10 was synthesized directly from 2,5-dihydroxyacetophenone (9) as shown in Scheme 2 and similarly submitted to enzyme-catalyzed hydrolysis. Table 2 shows the results. The (R)-10¹¹ obtained by enzyme-catalyzed kinetic resolution was reduced to (R)-tocol by NaBH₄ reduction and Pd-C catalyzed hydrogenation, which was then methylated to give natural α -tocopherol [(R)-1]⁸. The unnatural enantiomer [(S)-8] was converted to the substrate [(RS)-10] for the enzyme-catalyzed hydrolysis by racemization and subsequent acetylation.

REFERENCES AND NOTES

- Niki,E.; Komuro.E.; "Oxygen Radicals in Biology and Medicine", (Simic.M.G.; Taylor.K.A.; Ward J.F.;
 C.von Sonntag eds.)
- (a) Ames.S.R.; Ludwig.M.I.; Nelan.D.R.; Robeson.C.D.; Biochemistry, 1963, 2,188,
 (b) Machlin.L.J.; Gabriel.E.; Brin.M.; J.Nutr. 1982.112,1437.
- 3. Karrer.P.; Koenig.H.; Ringier.B.H.; Salomon.H.; Helv. Chem. Acta, 1939, 22, 1139.
- 4. Robeson.C.D.; Nelan.D.R.; J.Am. Chem. Soc. 1962, 84, 3196. USP, 3, 153, 040, 1964.
- 5. Schudel.P.; Mayer.H.; Matzger.J.; Ruegg.R.; Isler.O.; Helv. Chem. Acta, 1963.46,333,
- Enzymes were kindly supplied by Amano Pharmaceutical Co.,Ltd. lipaseAY(Candida rugosa)
 CHE(Cholesterol esterase),lipaseAH(Pseudomonas sp.),lipasePS(Pseudomonas sp.),lipaseM(Mucor javanicus)
 lipaseAK(Pseudomonas sp.),F-AP15(Rhizopus javanicus).
- 7. (R)-7: $[\alpha]_D^{20}$ +4.1 (c 0.6 EtOH). ¹H-NMR(CDCl₃) δ : 0.80-0.88(12H,m), 1.05-1.65 (24H,m), 1.65-1.91(2H,m), 2.25(3H,s), 2.70(2H,t,J=4.4Hz), 6.53-7.67(3H,m).
- Identification was carried out by comparison of HPLC analysis using a column packed with Daicel Chiralcel OD-H(hexane/2-propanol=2000/1) with an authentic d-α-tocopherol.
 (R)-1:[α]D²⁰ +0.68 (c 0.8 EtOH). [lit.⁵ +0.75(EtOH), authentic d-α-tocopherol +0.70 (c 1.0 EtOH)].
 ¹H-NMR (CDCl₃) δ: 0.82-0.88(12H,m), 1.07-1.60(24H,m), 1.72-1.85(2H,m), 2.10-2.18(9H,m), 2.60(2H,tJ=2Hz), 4.18(1H,s). MASS:m/z(M⁺)430.
- 9. Kijima.S.; Nonaka.A.; JP,60-4183(1985).
- Previously, we have reported another type of substrate, of which reaction site a little remote from the stereogenic carbon atom. (a) Murata.M.; Achiwa.K.; Tetrahedron Lett, 1991,32,6763.
 (b) Ebike.H.; Terao.Y.; Achiwa.K.; Tetrahedron Lett, 1991,32,5805.
- 11. (R)-10:[α]D²⁰ +9.02 (c 0.6 EtOH) ¹H-NMR (CDCl₃) δ : 0.83-0.90(12H,m), 1.00-1.80 (24H,m), 2.25(3H,s), 2.70(2H,ddJ=17Hz), 6.91-7.54(3H,m).